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Open questions

Batch learning

Predict label Y from object
X based on some data,

data often assumed
i.i.d from P ,
build f̂ based on the
whole dataset,
minimize R(f̂ ) where

R(f ) = E(X ,Y )∼P [`(Y , f (X ))]
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Open questions

Online learning

no probabilistic
assumption,
data revealed
sequentially, at time t
build f̂t based on data
seen so far
minimize

T∑
t=1

`(Yt , f̂t(Xt))
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Open questions

Tentative definition - from Thrun and Pratt

Given
a task,
a training experience,
and
a performance
measure,

a program is said to learn if
its performance at the task
improves with experience.
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Open questions

Tentative definition - from Thrun and Pratt

Given
a family of tasks,
training experience for
each of these tasks,
and
a family of
performance measures,

an algorithm is said to learn
to learn if its performance
at each task improve with
experience and with the
number of tasks.
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Open questions

Multitask learning

Multitask learning
Given M tasks t, with M risks Rt(·) and M datasets

St :=
(

(Xt,1,Yt,1), . . . , (Xt,nM ,Yt,nM )
)

propose M predictors

f̂t(·) = f̂t(S1, . . . ,SM ; ·)

that aims at minimizing (for example)

R1(f̂1) + · · ·+ RM(f̂M).

Nice, but what if yet another new task appears ?
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Open questions

Learning-to-learn

Learning-to-learn (LTL)

Given M tasks t with risk Rt(·), and M datasets

St :=
(

(Xt,1,Yt,1), . . . , (Xt,nM ,Yt,nM )
)

learn information I = I(S1, . . . ,SM) such that, when a new
task with risk R(·) and a new dataset

S :=
(

(X1,Y1), . . . , (Xn,Yn)
)

arrives, I can build a predictor

f̂t(·) = f̂t(S, I; ·) such that R(f̂ ) is small.
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Open questions

Probabilistic setting for LTL

Possible probabilistic setting :

P1, . . . ,PM i.i.d from P ,
(Xt,1,Yt,1), . . . , (Xt,nM ,Yt,nM ) i.i.d from Pt ,
Rt(f ) = E(X ,Y )∼Pt [`(Y , f (X ))],
quantitative criterion to minimize w.r.t I

RLTL(I) = EP∼P

{
min
f ∈C

E(X ,Y )∼P [`(Y , f (I,X ))]

}
.

Note the strong Bayesian flavor...
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Open questions

Example of LTL : dictionary learning
The Xt,i ∈ RK , but all the relevant information is in
DXt,i ∈ Rk , k � K . The matrix D is unknown.

β1, . . . , βM i.i.d from P ,
(Xt,1,Yt,1), . . . , (Xt,n,Yt,n) i.i.d from Pβt :

Y = βT
t DX + ε,

Rt(β,∆) = E(X ,Y )∼Pβt [`(Y , βT∆X )],
quantitative criterion to minimize w.r.t M

RLTL(∆) = Eβ∼P
{
E(X ,Y )∼Pβ

[
`(Y , βT∆X )

]}
.

Maurer, Pontil and Romera-Paredes studied the estimator

D̂ = arg min
∆

M∑
t=1

arg min
‖βt‖1≤α

n∑
i=1

`(Yt,i , β
T
t ∆Xt,i)
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Going online : lifelong learning

Lifelong learning (LL)

Online version of learning-to-learn ?

Recent work with The Tien Mai and Massimiliano Pontil.
Objectives :

consider that tasks can be revealed sequentially. Use the
tools of online learning theory : avoid probabilistic
assumptions.
if possible, define a general strategy that does not depend
on the learning algorithm used within each task.
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Massimiliano Pontil
(UCL, IIT)

The Tien Mai
(U. of Oslo)
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Open questions

Setting

objects in X , labels in Y ,

set of functions G : X → Z and H : Z → Y ,
loss function `.

Lifelong-learning problem (LL)

Propose initial g .
For t = 1, 2, . . . ,

1 propose initial ht .
For i = 1, . . . , nt

1 xt,i revealed,
2 predict ŷt,i = ht ◦ g(xt,i ),
3 yt,i revealed, suffer loss ˆ̀

t,i := `(yt,i , ŷt,i ),
4 update ht .

2 udpate g .
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Open questions

Within-task algorithm

For t = 1, 2, . . . ,
1 Solve a usual online task, input zt,i = g(xt,i), output yt,i .
2 udpate g .

We can do it using any online algorithm. Will be refered to as
“within-task algorithm”.
For many algorithms, bounds are known on the
(normalized)-regret :

Rt(g) =
1
nt

nt∑
i=1

`(yt,i , ŷt,i)︸ ︷︷ ︸
= 1

nt

∑nt
i=1

ˆ̀
t,i=L̂t(g)

− 1
nt

inf
h∈H

nt∑
i=1

`(yt,i , h(zt,i)).
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Open questions

Examples of within-task algorithms

Online gradient for convex `
Initialize h = 0.
Update h← h − η∇f =h`(yt,i , f (zt,i)).

Many variants and improvements (projected gradient, online
Newton-step, ...).
Rt(g) in 1/

√
nt or 1/nt depending on assumptions on `.

EWA (Exponentially Weighted Aggregation)

Prior ρ1 = π, initialize h ∼ ρ1.
Update ρi+1(df ) ∝ exp[−η`(yt,i , f (zt,i))]ρi(df ), h ∼ ρi+1.

E[Rt(g)] in 1/
√
nt under boundedness assumption.

Integrated variant : Rt(g) in 1/nt if ` is exp-concave.
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Rt(g) in 1/

√
nt or 1/nt depending on assumptions on `.

EWA (Exponentially Weighted Aggregation)

Prior ρ1 = π, initialize h ∼ ρ1.
Update ρi+1(df ) ∝ exp[−η`(yt,i , f (zt,i))]ρi(df ), h ∼ ρi+1.

E[Rt(g)] in 1/
√
nt under boundedness assumption.

Integrated variant : Rt(g) in 1/nt if ` is exp-concave.
Pierre Alquier Lifelong Learning
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Open questions

EWA for lifelong learning

EWA-LL
Prior π = ρ1 on G. Draw g ∼ π.
For t = 1, 2, . . .

1 run the within-task algorithm on task t. Suffer L̂t(g).
2 update ρt+1(df ) ∝ exp[−ηL̂t(f )]ρt(df ).
3 draw g ∼ ρt+1.

Next : we provide two examples that are corollaries of a
general result (stated later).
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Open questions

Example 1 : dictionary learning

X = RK → Z = Rk → Y = R
x 7→ Dx 7→ 〈h,Dx〉 = hTDx .

within-task algorithm : online gradient descent on h.
EWA-LL, prior : columns of D i.i.d uniform on unit sphere.

Theorem (Corollary 4.4) - ` is bounded by B & L-Lipschitz

E

[
1
T

T∑
t=1

1
nt

nt∑
i=1

ˆ̀
t,i

]
≤ inf

D

1
T

T∑
t=1

inf
‖ht‖≤C

1
nt

nt∑
i=1

`(yt,i , h
T
t Dxt,i)

+
C

4

√
Kk

T
(log(T ) + 7) +

BL√
T

+ .
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Open questions

Example 1 (dictionary learning) : simulations

simulations X = R5 → Z = R2 → Y = R with ` the
quadratic loss, T = 150, each nt = 100.

implementation of EWA-LL, at each step, D is updated
using N iterations of Metropolis-Hastings.
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Open questions

Example 2 : finite set of predictors

x
g∈G7→ g(x)

h∈H7→ h(g(x)).

card(G) = G < +∞, card(H) = H < +∞

within-task algorithm : EWA, uniform prior.
EWA-LL, uniform prior.

Theorem (Corollary 4.2) - ` bounded by C & α-exp-concave

E

[
1
T

T∑
t=1

1
m

m∑
i=1

ˆ̀
t,i

]
≤ inf

g∈G

1
T

T∑
t=1

inf
ht∈H

1
m

m∑
i=1

`(yt,i , ht◦g(xt,i))

+ C

√
logG

2T
+ .
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Example 2 : finite set of predictors

x
g∈G7→ g(x)

h∈H7→ h(g(x)).

card(G) = G < +∞, card(H) = H < +∞
within-task algorithm : EWA, uniform prior.
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Open questions

Example 2 : finite set of predictors

x
g∈G7→ g(x)

h∈H7→ h(g(x)).

card(G) = G < +∞, card(H) = H < +∞
within-task algorithm : EWA, uniform prior.
EWA-LL, uniform prior.

Theorem (Corollary 4.2) - ` bounded by C & α-exp-concave
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Open questions

Example 2 : improvement on existing results
The “online-to-batch” trick allows to deduce from our online
method a statistical estimator with a controled LTL risk in

O

(√
logG

T
+

logH

n

)
.

In this case, a previous bound by Pentina and Lampert was in

O

(√
logG

T
+

√
logH

n

)
.
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Open questions

General regret bound

Theorem (Theorem 3.1) - ` bounded by C

If for any g ∈ G, the within-task algorithm has a regret bound
Rt(g) ≤ β(g , nt), then

E

[
1
T

T∑
t=1

1
nt

nt∑
i=1

ˆ̀
t,i

]

≤ inf
ρ

{∫ [
1
T

T∑
t=1

inf
ht∈H

1
nt

nt∑
i=1

`
(
yt,i , ht ◦ g(xt,i)

)
+

1
T

T∑
t=1

β(g , nt)

]
ρ(dg) +

ηC 2

8
+
K(ρ, π)

ηT

}
.
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1 Transfer learning, multitask learning, lifelong learning...

2 A strategy for lifelong learning, with regret analysis

3 Open questions
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Open questions

Efficient algorithms ?

Our online analysis allows to avoid explicit probabilistic
assumptions on the data, and allows a free choice of the
within-task algorithm.

However, EWA-LL is not “truly online” as its computation
requires to store all the data seen so far.
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Open questions

Efficient Lifelong Learning Algorithm : ELLA

dictionary learning,

fast update of D and β
at each step, truly
online : no need to
store the data,
very good empirical
performances,
no regret bound.
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Open questions

More progress on dictionary learning

dictionary learning,

fast update of β at
each step, fast update
of D at the end of
each task, truly online,
very good empirical
performances,
LTL bound in

O

(√
1
T

+

√
1
n

)
.

Pierre Alquier Lifelong Learning



Transfer learning, multitask learning, lifelong learning...
A strategy for lifelong learning, with regret analysis

Open questions

More progress on dictionary learning

dictionary learning,
fast update of β at
each step, fast update
of D at the end of
each task, truly online,

very good empirical
performances,
LTL bound in

O

(√
1
T

+

√
1
n

)
.

Pierre Alquier Lifelong Learning



Transfer learning, multitask learning, lifelong learning...
A strategy for lifelong learning, with regret analysis

Open questions

More progress on dictionary learning

dictionary learning,
fast update of β at
each step, fast update
of D at the end of
each task, truly online,
very good empirical
performances,

LTL bound in

O

(√
1
T

+

√
1
n

)
.

Pierre Alquier Lifelong Learning



Transfer learning, multitask learning, lifelong learning...
A strategy for lifelong learning, with regret analysis

Open questions

More progress on dictionary learning

dictionary learning,
fast update of β at
each step, fast update
of D at the end of
each task, truly online,
very good empirical
performances,
LTL bound in

O

(√
1
T

+

√
1
n

)
.

Pierre Alquier Lifelong Learning



Transfer learning, multitask learning, lifelong learning...
A strategy for lifelong learning, with regret analysis

Open questions

Algorithms : open questions

Open question 1
An efficient algorithm with theoretical guarantees (if possible
beyond dictionary learning).

theoretical analysis of ELLA ?
can we justify to update D at each step ? this leads to the
next big open problem...
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Open questions

Optimality of the bounds

ELLA : updates D at each step. Doing so, after T tasks
with n steps in each task, we would expect a bound in

O

(√
1
nT

+

√
1
n

)
.

Denevi et al : bound in

O

(√
1
T

+

√
1
n

)
.

So, what are the optimal rates in LL & LTL ?
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Open questions

Insights from a toy model

θ1 fixed once and for all,
task t : θ2,t fixed for the task
for i = 1, . . . , n, yt,i = (θ1 + ε1,i ,t , θ2,t + ε2,i ,t) with
εj ,i ,t ∼ N (0, 1).

θ̂1 = 1
nT

∑T
t=1

∑n
i=1(yt,i)1 can be computed in the online

setting and one has

E
(
|θ̂1 − θ1|

)
= O

(√
1
nT

)
.

Fits our setting with x = ∅, gθ1(x) = θ1, hθ2(z) = (z , θ2).
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Open questions

Insights from a toy model

θ1 fixed once and for all,
task t : θ2,t and ε1,t ∼ N (0, 1) fixed for the task.
for i = 1, . . . , n, yt,i = (θ1 + ε1,t , θ2,t + ε2,i ,t) with
ε2,i ,t ∼ N (0, 1).

θ̂1 = 1
T

∑T
t=1(yt,i)1 can be computed in the online setting and

one has

E
(
|θ̂1 − θ1|

)
= O

(√
1
T

)
.

Still fits our setting and LTL !
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Open questions

Optimal rates : open questions

Open question 2
What are the optimal rates in lifelong learning and in LTL ?

requires to define properly class of predictors,
the optimal rate will also depend on the setting. This
leads to the next question...
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Open questions

Are our definitions even right ?

Note that the terminology is not exen fixed : for example,
Pentina and Lampert call lifelong learning what we call
learning to learn (we don’t claim we are right !).

We used :
1

2

3
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Open questions

Are our definitions even right ?

Note that the terminology is not exen fixed : for example,
Pentina and Lampert call lifelong learning what we call
learning to learn (we don’t claim we are right !).
We used :

1 LTL : samples from all the tasks presented at once.
2 LL : tasks presented sequentially, within each task, pairs

presented sequentially.
3 why not tasks presented sequentially, but within each

task, samples presented all at once ?
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Open questions

Are our definitions even right ?

Note that the terminology is not exen fixed : for example,
Pentina and Lampert call lifelong learning what we call
learning to learn (we don’t claim we are right !).
We used :

1 LTL : “Batch-within-batch”
2 LL : “Online-within-online”
3 “Batch-within-online”, see our paper and Denivi et al.
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Open questions

Towards more models ?

One can imagine even more settings :
observations not ordered by tasks ?

for some tasks, the information is complete, for other
tasks, this is not the case. For example some tasks are
sequential predictions, others are bandit problems.
more complicated : we use within tasks an algorithm for
which we don’t have a regret bound, for example deep
neural network for image classification in self-driving cars.
We have a partial feedback that is not the
missclassification rate but depends on it : number of
accidents, user feedback...

Do we really need a paper for each possible variant ?...
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which we don’t have a regret bound, for example deep
neural network for image classification in self-driving cars.
We have a partial feedback that is not the
missclassification rate but depends on it : number of
accidents, user feedback...
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Open questions

Setting : open questions

Open question 3
Which settings are relevant ? Which settings are not ? To what
extent is a general theory possible ?
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