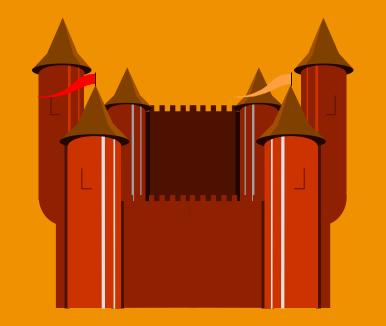
From Multiarmed Bandits to Stochastic Optimization

> Multiarmed Bandits Workshop Rotterdam, NL

> > May 24, 2018



Warren B. Powell

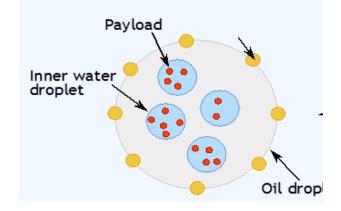
Princeton University Department of Operations Research and Financial Engineering

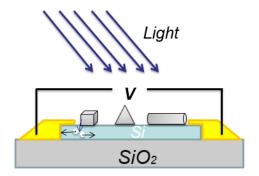
© 2018 Warren B. Powell, Princeton University

Materials science

- » Optimizing payloads: reactive species, biomolecules, fluorescent markers, ...
- » Controllers for robotic scientist for materials science experiments

» Optimizing nanoparticles to maximize photoconductivity

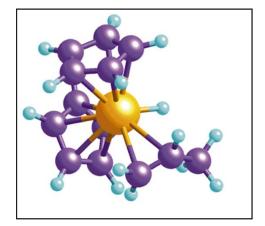


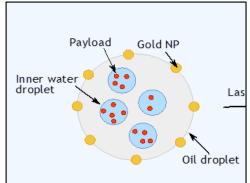


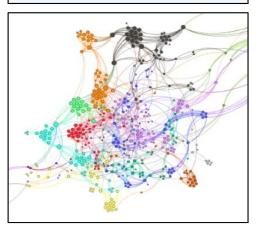
Learning problems

- Health sciences
 - » Sequential design of experiments for drug discovery

- » Drug delivery Optimizing the design of protective membranes to control drug release
- » Medical decision making –
 Optimal learning for medical treatments.

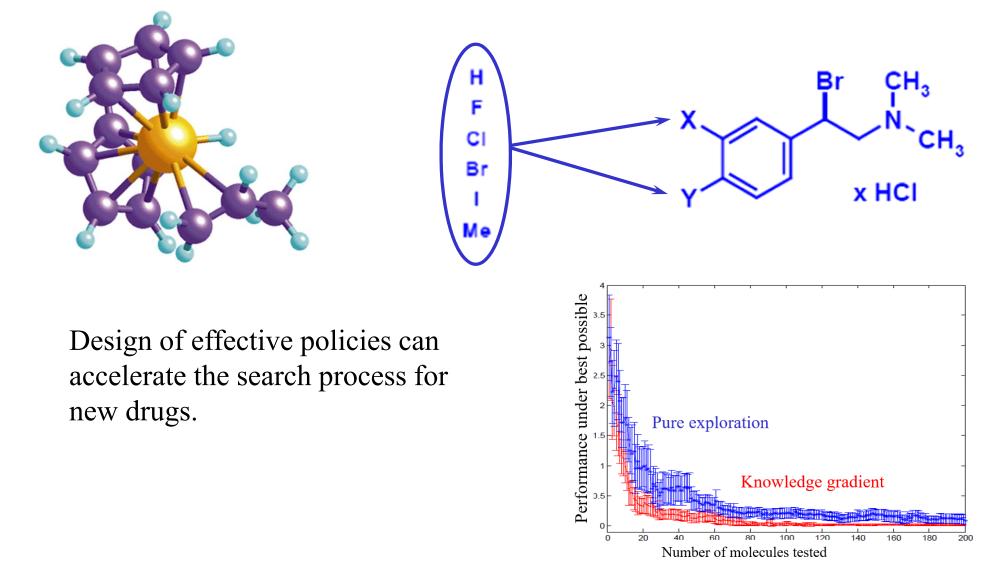






Drug discovery

Optimizing the configuration of molecules



Optimal learning in diabetes

- How do we find the best treatment for diabetes?
 - » The standard treatment is a medication called metformin, which works for about 70 percent of patients.
 - » What do we do when metformin does not work for a patient?
 - » There are about 20 other treatments, and it is a process of trial and error. Doctors need to get through this process as quickly as possible.

Optimal Dosing Applied to Glycemic Control for Type 2 Diabetes

> KATIE W. HSIH Advisor: Warren B. Powell

Truckload brokerages

Now we have a logistic curve for each origin-destination pair (i,j)

$$P^{Y}(p,a \mid \theta) = \frac{e^{\theta_{ij}^{0} + \theta_{ij}p + \theta_{ij}^{a}a}}{1 + e^{\theta_{ij}^{0} + \theta_{ij}p + \theta_{ij}^{a}a}}$$

- Number of offers for each (i,j) pair is relatively small.
- Need to generalize the learning across "traffic lanes."
- Slides that follow are from senior thesis of Connor Werth '2017

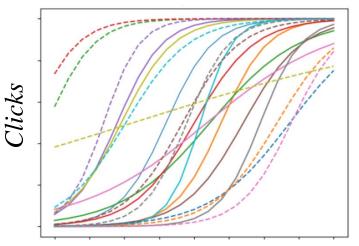
Offered price

Ad-click optimization

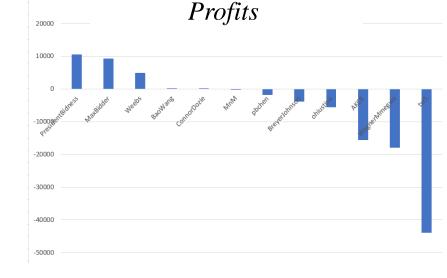
Optimizing bids for internet ads

- » In partnership with Roomsage.com
- » Developed Princeton ad-click game
- » Teams compete to find best policy

Deller	C'+
Policy	profit
PresidentBidness_LA_1	10528
MaxBidder_LAPS_alpha	8439
PresidentBidness_PS_1	5553
Weebs_LA_EZPolicy	3458
MaxBidder_PS_alpha	2573
Weebs_LA_MetropolisHastings	1740
AKCB_LA_1	1471
pbchen_PS_s4real	790
BaoWang_PS_WeGo2	599
MnM_LAPS_M	219
MmegwaWagnerinterval_estimation	61
AKCB_PS_1	0
ohiustina_LA_3	0



Bid (\$/click)

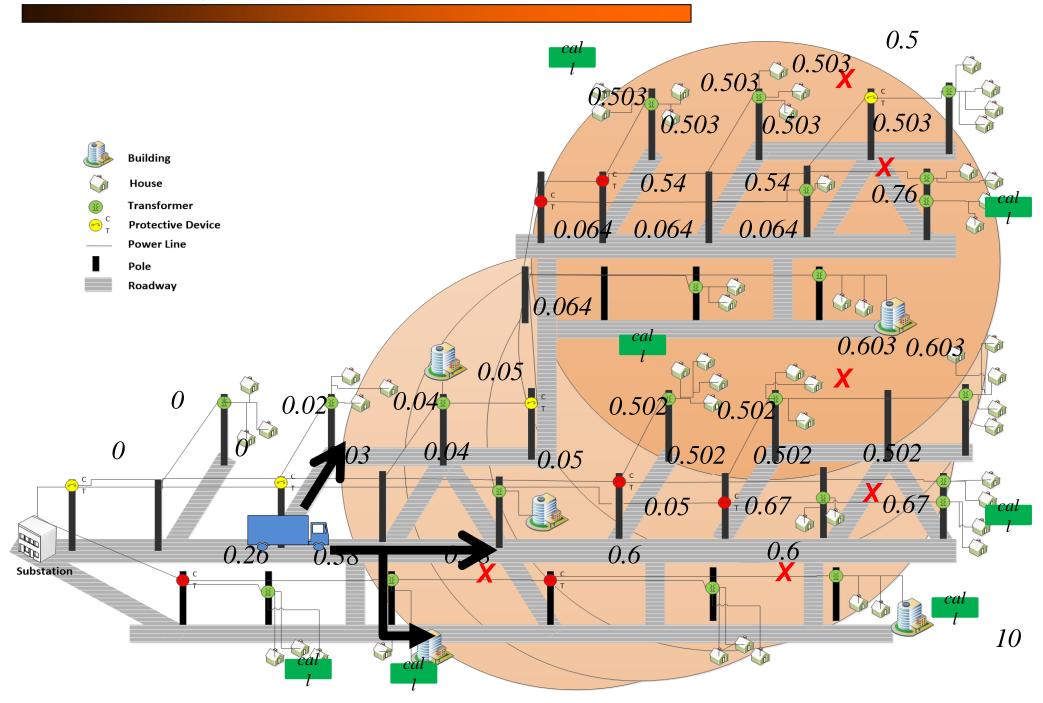


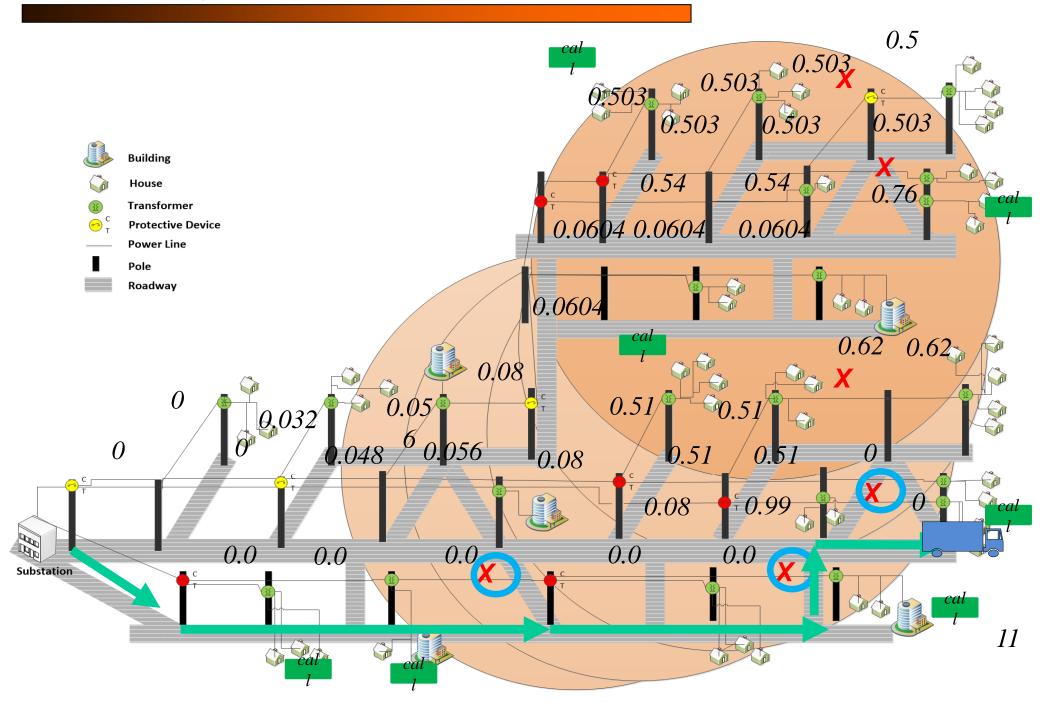
Hurricane Sandy

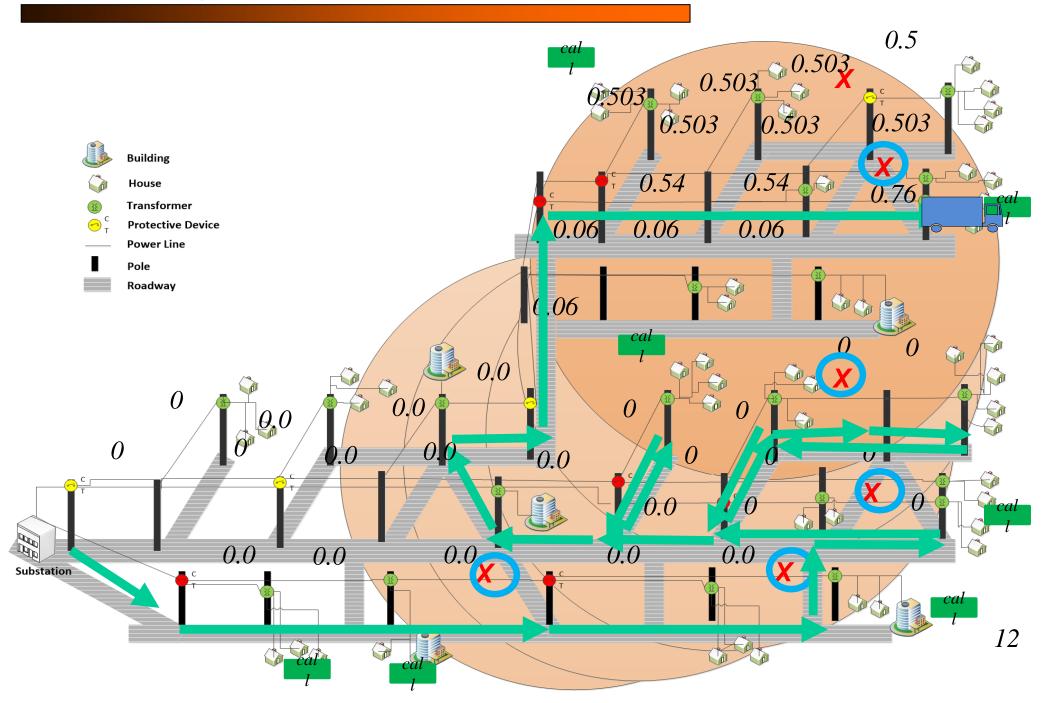
- » Once in 100 years?
- » Rare convergence of events
- » But, meteorologists did an amazing job of forecasting the storm.

The power grid

- » Loss of power creates
 cascading failures (lack of
 fuel, inability to pump water)
- » How to plan?
- » How to react?





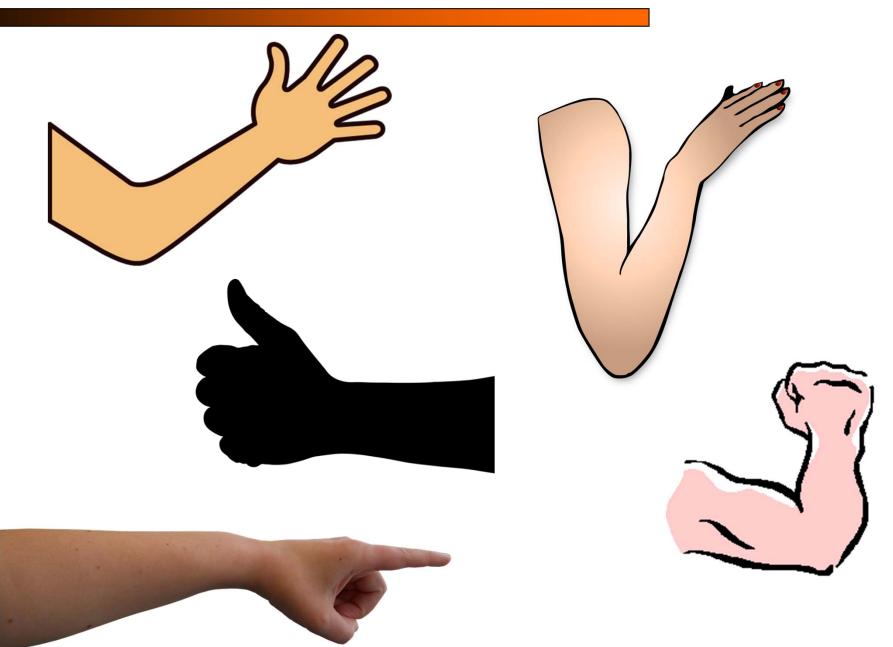


The "bandit" vocabulary

Bandit problem	Description
Multiarmed bandits	Basic problem with discrete alternatives, online (cumulative regret) learning, lookup table belief model with independent beliefs
Restless bandits	Truth evolves exogenously over time
Adversarial bandits	Distributions from which rewards are being sampled can be set by arbitrarily by an adversary
Continuum-armed bandits	Arms are continuous
X-armed bandits	Arms are a general topological space
Contextual bandits	Exogenous state is revealed which affects the distribution of rewards
Dueling bandits	The agent gets a relative feedback of the arms as opposed to absolute feedback
Arm-acquiring bandits	New machines arrive over time
Intermittent bandits	Arms are not always available
Response surface bandits	Belief model is a response surface (typically a linear model)

The "bandit" vocabulary

Bandit problem	Description
Linear bandits	Belief is a linear model
Dependent bandits	A form of correlated beliefs
Finite horizon bandits	Finite-horizon form of the classical infinite horizon multi- armed bandit problem
Parametric bandits	Beliefs about arms are described by a parametric belief model
Nonparametric bandits	Bandits with nonparametric belief models
Graph-structured bandits	Feedback from neighbors on graph instead of single arm
Extreme bandits	Optimize the maximum of recieved rewards
Quantile-based bandits	The arms are evaluated in terms of a specified quantile
Preference-based bandits	Find the correct ordering of arms
Best-arm bandits	Identify the optimal arm with the largest confidence given a fixed budget



... and bandits

Multiarmed bandit problems

- What is a "bandit problem"?
 - » The literature seems to characterize a "bandit problem" as any problem where a policy has to balance exploration vs. exploitation.
 - » But this means that a bandit "problem" is defined by how it is solved. E.g., if you use a pure exploration policy, is it a bandit problem?
- My definition:
 - » Any sequential decision problem which involves learning, and where we have direct or indirect control over the information that is collected.

Multiarmed bandit problems

- Dimensions of a "bandit" problem:
 - » The "arms" (decisions) may be
 - Binary (A/B testing, stopping problems)
 - Discrete alternatives (drug, catalyst, ...)
 - Continuous choices (price)
 - Vector-valued (basketball team, products, movies, ...)
 - Multiattribute (attributes of a movie, song, person)
 - Static vs. dynamic choice sets
 - Sequential vs. batch
 - » Information (what we observe)
 - Success-failure/discrete outcome
 - Exponential family (e.g. Gaussian, exponential, ...)
 - Heavy-tailed (e.g. Cauchy)
 - Data-driven (distribution unknown)
 - Stationary vs. nonstationary processes
 - Lagged responses?
 - Adversarial?

Multiarmed bandit problems

- Dimensions of a "bandit" problem:
 - » Belief models
 - Lookup tables (these are most common)
 - Independent or correlated beliefs
 - Parametric models
 - Linear or nonlinear in the parameters
 - Nonparametric models
 - Locally linear
 - Deep neural networks/SVM
 - Bayesian vs. frequentist
 - » Objective function
 - Expected performance (e.g. regret)
 - Offline (final reward) vs. online (cumulative reward)
 - Just interested in final design?
 - Or optimizing while learning?
 - Risk metrics

Outline

- Elements of a sequential decision model
- Mixed state problems
- Designing policies
- Searching for the best policy

Outline

- Elements of a sequential decision model
- Mixed state problems
- Designing policies
- Searching for the best policy

Modeling

- Any sequential decision problem consists of five core elements:
 - » State variables
 - » Decision variables
 - » Exogenous information
 - » Transition function
 - » Objective function

The state variable:

Controls community

 $x_{t} = "Information state"$ Operations research/MDP/Computer science $S_{t} = (R_{t}, I_{t}, B_{t}) = \text{System state, where:}$ $R_{t} = \text{Resource state (physical state)}$ Location/status of truck/train/plane
Energy in storage

 I_t = Information state

Prices

Weather

 B_t = Belief state ("state of knowledge") Belief about traffic delays Belief about the status of equipment

- The state variable:
 - » The initial state S^0 contains:
 - All deterministic parameters
 - Initial values of dynamic parameters
 - Prior distribution of belief about unknown parameters
 - » The dynamic state S^n , n > 0, contains
 - All information that changes over time.
 - Physical state

 $R^{n+1} = R^n + x^n + \hat{R}^{n+1}$

• Information state

$$p^{n+1} = p^n + \hat{p}^{n+1}$$

• Belief state (Bayesian updating):

$$\overline{\mu}_x^{n+1} = \frac{\beta^n \overline{\mu}_x^n + \beta^W W^{n+1}}{\beta^n + \beta^W}$$
$$\beta_x^{n+1} = \beta_x^n + \beta^W$$

Decisions:

Markov decision processes/Computer science $a_t = \text{Discrete action}$ Control theory $u_t = \text{Low-dimensional continuous vector}$ Operations research $x_t = \text{Usually a discrete or continuous but high disc}$

 x_t = Usually a discrete or continuous but high-dimensional vector of decisions.

At this point, we do not specify *how* to make a decision. Instead, we define the function $X^{\pi}(s)$ (or $A^{\pi}(s)$ or $U^{\pi}(s)$), where π specifies the type of policy. " π " carries information about the type of function f, and any tunable parameters $\theta \in \Theta^{f}$.

The decision variables

- Styles of decisions
 - » Binary

$$x \in X = \{0, 1\}$$

» Finite

$$x \in X = \{1, 2, ..., M\} \leftarrow \text{Classic bandit model}$$

» Continuous scalar

$$x \in X = [a, b]$$

» Continuous vector

$$x = (x_1, \dots, x_K), \quad x_k \in \mathbb{R}$$

» Discrete vector

$$x = (x_1, \dots, x_K), \quad x_k \in \mathbb{Z}$$

» Categorical

 $x = (a_1, ..., a_I), a_i$ is a category (e.g. patient attributes)

Exogenous information:

 $W_{t} = \text{New information that first became known at time } t$ $= \left(\hat{R}_{t}, \hat{D}_{t}, \hat{p}_{t}, \hat{E}_{t}\right)$

- \hat{R}_t = Equipment failures, delays, new arrivals New drivers being hired to the network
- \hat{D}_t = New customer demands
- \hat{p}_t = Changes in prices

 \hat{E}_t = Information about the environment (temperature, ...)

Note: Any variable indexed by t is known at time t. This convention, which is not standard in control theory, dramatically simplifies the modeling of information.

Below, we let ω represent a sequence of actual observations W_1, W_2, \dots $W_t(\omega)$ refers to a sample realization of the random variable W_t .

The transition function

 $S_{t+1} = S^{M} (S_{t}, x_{t}, W_{t+1})$ $R_{t+1} = R_{t} + x_{t} + \hat{R}_{t+1} \quad \text{Inventories}$ $p_{t+1} = p_{t} + \hat{p}_{t+1} \quad \text{Spot prices}$ $D_{t+1} = D_{t} + \hat{D}_{t+1} \quad \text{Market demands}$ $\overline{\mu}_{x}^{n+1} = \frac{\beta^{n} \overline{\mu}_{x}^{n} + \beta^{W} W^{n+1}}{\beta^{n} + \beta^{W}} \\ \beta_{x}^{n+1} = \beta_{x}^{n} + \beta^{W}$ Bayesian updating of belief

Also known as the: "System model" "State transition model" "Plant model" "Plant equation" "Transition law"

"Transfer function" "Transformation function" "Law of motion" "Model"

Modeling stochastic, dynamic problems

- The universal objective function
 - » Cumulative reward (classical bandit objective)

$$\max_{\pi} \mathbb{E}\left\{\sum_{t=0}^{T} C_t\left(S_t, X_t^{\pi}(S_t), W_{t+1}\right) \mid S_0\right\}$$

» Final reward ("best arm" bandit objective)

$$\max_{\pi} \mathbb{E}F(x^{\pi,N}, \hat{W})$$

Given a system model (transition function)

$$S_{t+1} = S^M\left(S_t, x_t, W_{t+1}(\omega)\right)$$

and a stochastic process:

$$(S_0, W_1, W_2, ..., W_T)$$

Outline

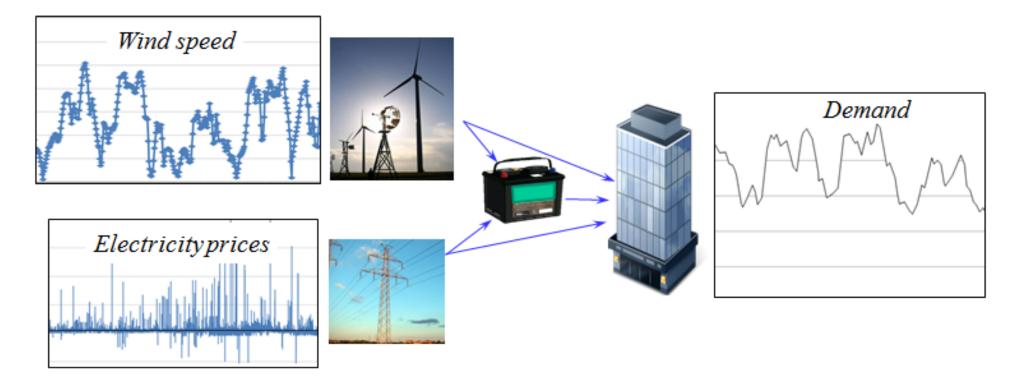
- Elements of a sequential decision model
- Mixed state problems
- Designing policies
- Searching for the best policy

- Some major problem classes
 - » Pure physical state $S^n = (R^n)$
 - Inventory problems
 - Stochastic shortest path problems
 - » Physical plus information $S^n = (R^n, I^n)$
 - Inventory with exogenous prices, weather, ...
 - » Pure belief states $S^n = (B^n)$
 - These are classical bandit problems
 - Different types of belief models
 - » Belief plus information $S^n = (I^n, B^n)$
 - Patient arriving to doctor's office who then prescribes a drug.
 - "Contextual bandit problems"
 - » Everything: $S^n = (R^n, I^n, B^n)$
 - Revenue management
 - Clinical trials

- Mixed state problems (physical and belief state)
 - » Clinical trials
 - Learning the performance of a new drug (belief state)
 - Tracking the number of patients signed up (physical state)
 - » Revenue management for hotels
 - Learning market response to price (belief state)
 - Tracking how many rooms have been reserved (physical state)
 - » An energy storage problem...

An energy storage problem

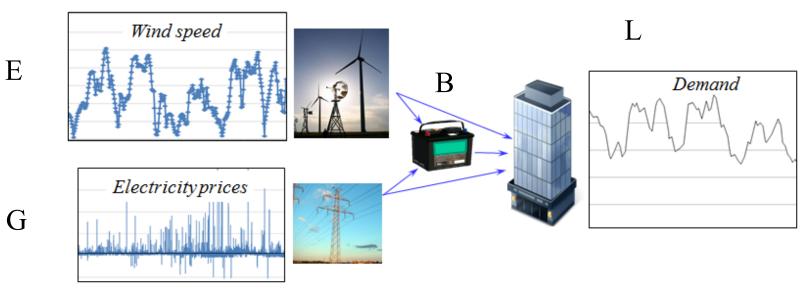
Consider a basic energy storage problem:



» We have to manage the flows of energy (blue lines) while managing different sources of uncertainty.

An energy storage problem

Transition function without learning

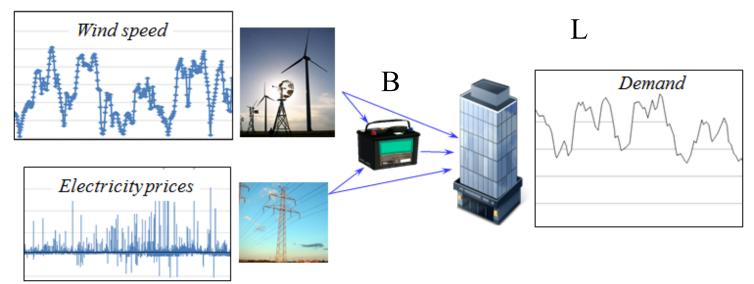


$$\begin{split} E_{t+1} &= E_t + \hat{E}_{t+1} \\ p_{t+1} &= \theta_0 p_t + \theta_1 p_{t-1} + \theta_2 p_{t-2} + \mathcal{E}_{t+1}^p \\ D_{t+1} &= f_{t,t+1}^D + \mathcal{E}_{t+1}^D \\ R_{t+1}^{battery} &= R_t^{battery} + x_t \end{split}$$

An energy storage problem

E

Transition function with passive learning



$$\begin{split} E_{t+1} &= E_t + \hat{E}_{t+1} \\ p_{t+1} &= \overline{\theta_{t0}} p_t + \overline{\theta_{t1}} p_{t-1} + \overline{\theta_{t2}} p_{t-2} + \mathcal{E}_{t+1}^p \\ D_{t+1} &= f_{t,t+1}^D + \mathcal{E}_{t+1}^D \\ R_{t+1}^{battery} &= R_t^{battery} + x_t \end{split}$$

Learning in stochastic optimization

- Updating the demand parameter
 - » Let p_{t+1} be the new price and let

$$\overline{F}^{n}(x \mid \overline{\theta}_{t}) = \overline{\theta}_{t0} p_{t} + \overline{\theta}_{t1} p_{t-1} + \overline{\theta}_{t2} p_{t-2}$$

» We update our estimate $\bar{\theta}_t$ using our recursive least squares equations:

$$\overline{\theta}_{t+1} = \overline{\theta}_{t} - \frac{1}{\gamma_{t+1}} B_{t} \phi_{t} \varepsilon_{t+1} \qquad \phi_{t} = \begin{bmatrix} T & T \\ p_{t-1} \\ p_{t-2} \end{bmatrix}$$

$$\varepsilon_{t+1} = \overline{F}_{t} (x_{t} | \overline{\theta}_{t}) - p_{t+1},$$

$$B_{t+1} = B_{t} - \frac{1}{\gamma_{t+1}} \left(B_{t} \phi(\phi)^{T} B_{t} \right)$$

$$\gamma_{t+1} = 1 + (\phi)^{T} B_{t} \phi$$

An energy storage problem

E

Transition function with active learning



$$\begin{split} E_{t+1} &= E_t + \hat{E}_{t+1} \\ p_{t+1} &= \overline{\theta_{t0}} p_t + \overline{\theta_{t1}} p_{t-1} + \overline{\theta_{t2}} p_{t-2} - \overline{\theta_{t3}} x^{GB} + \varepsilon_{t+1}^p \\ D_{t+1} &= f_{t,t+1}^D + \varepsilon_{t+1}^p \\ R_{t+1}^{battery} &= R_t^{battery} + x_t \end{split}$$

Outline

- Elements of a sequential decision model
- Mixed state problems
- Designing policies
- Searching for the best policy

- We have to start by describing what we mean by a policy.
 - » Definition:

A policy is a mapping from a state to an action. ... any mapping.

How do we search over an arbitrary space of policies?

Two fundamental strategies:

1) Policy search – Search over a class of functions for making decisions to optimize some metric.

$$\max_{\pi=(f\in F,\theta^{f}\in\Theta^{f})} \mathbb{E}\left\{\sum_{t=0}^{T} C_{t}\left(S_{t}, X_{t}^{\pi}(S_{t} \mid \theta)\right) \mid S_{0}\right\}$$

2) Lookahead approximations – Approximate the impact of a decision now on the future.

$$X_{t}^{*}(S_{t}) = \arg\max_{x_{t}} \left(C(S_{t}, x_{t}) + \mathbb{E}\left\{ \max_{\pi \in \Pi} \left\{ \mathbb{E}\sum_{t'=t+1}^{T} C(S_{t'}, X_{t'}^{\pi}(S_{t'})) \mid S_{t+1} \right\} \mid S_{t}, x_{t} \right\} \right)$$

Policy search:

1a) Policy function approximations (PFAs) $x_t = X^{PFA}(S_t | \theta)$

- Lookup tables
 - "when in this state, take this action"
- Parametric functions
 - Order-up-to policies: if inventory is less than s, order up to S.
 - Affine policies $x_t = X^{PFA}(S_t | \theta) = \sum_{t \in T} \theta_f \phi_f(S_t)$
 - Neural networks
- Locally/semi/non parametric
 - Requires optimizing over local regions
- 1b) Cost function approximations (CFAs)
 - Optimizing a deterministic model modified to handle uncertainty (buffer stocks, schedule slack)

$$X^{CFA}(S_t \mid \theta) = \arg \max_{x_t} \left(\overline{\mu}_{tx} + \theta \sigma_{tx} \right)$$

- Lookahead policies
 - 2a) Value function approximations

We approximate the impact of a decision on the future

$$X_{t}^{*}(S_{t}) = \arg\max_{x_{t}} \left(C(S_{t}, x_{t}) + \mathbb{E}\left\{ \max_{\pi \in \Pi} \left\{ \mathbb{E}\sum_{t'=t+1}^{T} C(S_{t'}, X_{t'}^{\pi}(S_{t'})) \mid S_{t+1} \right\} \mid S_{t}, x_{t} \right\} \right)$$

Approximating the value of being in a downstream state using machine learning ("value function approximations")

$$X_{t}^{*}(S_{t}) = \arg\max_{x_{t}} \left(C(S_{t}, x_{t}) + \mathbb{E}\left\{ V_{t+1}(S_{t+1}) \mid S_{t}, x_{t} \right\} \right)$$
$$X_{t}^{VFA}(S_{t}) = \arg\max_{x_{t}} \left(C(S_{t}, x_{t}) + \mathbb{E}\left\{ \overline{V}_{t+1}(S_{t+1}) \mid S_{t}, x_{t} \right\} \right)$$
$$= \arg\max_{x_{t}} \left(C(S_{t}, x_{t}) + \overline{V}_{t}^{x}(S_{t}^{x}) \right)$$

- Lookahead policies
 - 2a) Value function approximations

We approximate the impact of a decision on the future

$$X_{t}^{*}(S_{t}) = \arg\max_{x_{t}} \left(C(S_{t}, x_{t}) + \mathbb{E}\left\{ \max_{\pi \in \Pi} \left\{ \mathbb{E}\sum_{t'=t+1}^{T} C(S_{t'}, X_{t'}^{\pi}(S_{t'})) \mid S_{t+1} \right\} \mid S_{t}, x_{t} \right\} \right)$$

Approximating the value of being in a downstream state using machine learning ("value function approximations")

$$X_{t}^{*}(S_{t}) = \arg\max_{x_{t}} \left(C(S_{t}, x_{t}) + \mathbb{E}\left\{ V_{t+1}(S_{t+1}) \mid S_{t}, x_{t} \right\} \right)$$
$$X_{t}^{VFA}(S_{t}) = \arg\max_{x_{t}} \left(C(S_{t}, x_{t}) + \mathbb{E}\left\{ \overline{V}_{t+1}(S_{t+1}) \mid S_{t}, x_{t} \right\} \right)$$
$$= \arg\max_{x_{t}} \left(C(S_{t}, x_{t}) + \overline{V}_{t}^{x}(S_{t}^{x}) \right)$$

- Lookahead policies
 - 2a) Value function approximations

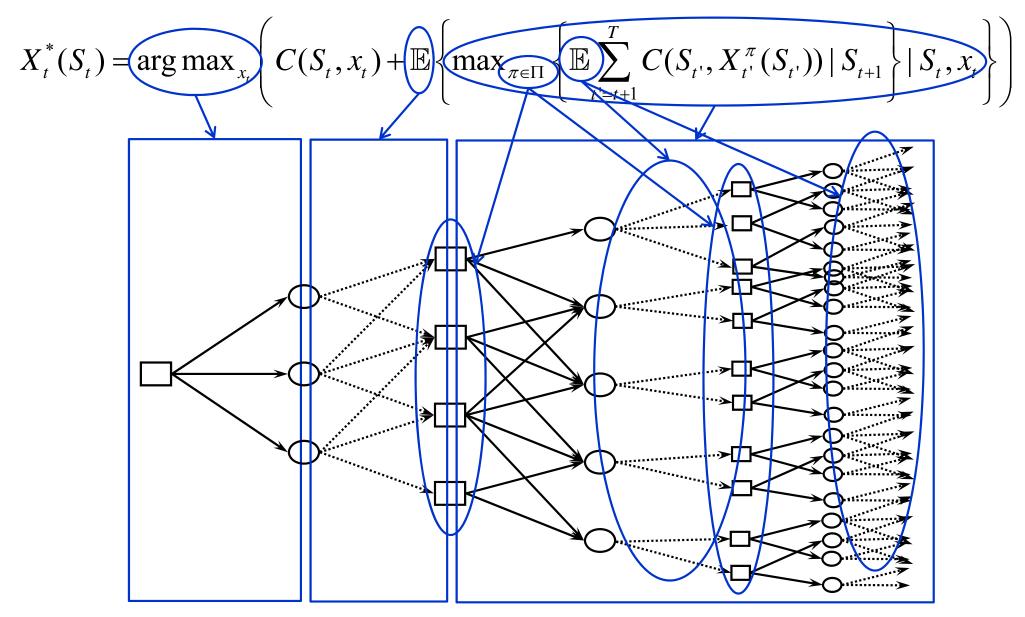
We approximate the impact of a decision on the future

$$X_{t}^{*}(S_{t}) = \arg\max_{x_{t}} \left(C(S_{t}, x_{t}) + \mathbb{E} \left\{ \max_{\pi \in \Pi} \left\{ \mathbb{E} \sum_{t'=t+1}^{T} C(S_{t'}, X_{t'}^{\pi}(S_{t'})) \mid S_{t+1} \right\} \mid S_{t}, x_{t} \right\} \right)$$

Approximating the value of being in a downstream state using machine learning ("value function approximations")

$$X_{t}^{*}(S_{t}) = \arg \max_{x_{t}} \left(C(S_{t}, x_{t}) + \mathbb{E} \left\{ V_{t+1}(S_{t+1}) \mid S_{t}, x_{t} \right\} \right)$$
$$X_{t}^{VFA}(S_{t}) = \arg \max_{x_{t}} \left(C(S_{t}, x_{t}) + \mathbb{E} \left\{ \overline{V}_{t+1}(S_{t+1}) \mid S_{t}, x_{t} \right\} \right)$$
$$= \arg \max_{x_{t}} \left(C(S_{t}, x_{t}) + \overline{V}_{t}^{x}(S_{t}^{x}) \right)$$

2b) Direct lookahead policies



- 2b) Direct lookahead policies
 - » We replace the exact lookahead...

$$X_{t}^{*}(S_{t}) = \arg\max_{x_{t}} \left(C(S_{t}, x_{t}) + \mathbb{E}\left\{ \max_{\pi \in \Pi} \left\{ \mathbb{E}\sum_{t'=t+1}^{T} C(S_{t'}, X_{t'}^{\pi}(S_{t'})) \mid S_{t+1} \right\} \mid S_{t}, x_{t} \right\} \right)$$

... with an approximation called the *lookahead model*:

$$X_t^*(S_t) = \arg\max_{x_t} \left(C(S_t, x_t) + \tilde{\mathbb{E}} \left\{ \max_{\tilde{\pi} \in \tilde{\Pi}} \left\{ \tilde{\mathbb{E}} \sum_{t'=t+1}^{t+H} C(\tilde{S}_{tt'}, \tilde{X}_{tt'}(\tilde{S}_{tt'})) \mid \tilde{S}_{t,t+1} \right\} \mid \tilde{S}_{tt}, x_t \right\} \right)$$

» *A lookahead policy* works by approximating the *lookahead model*.

- Types of lookahead approximations
 - » One-step lookahead Widely used in pure learning policies:
 - Bayes greedy/naïve Bayes
 - Thompson sampling
 - Value of information (knowledge gradient)
 - » Multi-step lookahead
 - Deterministic lookahead, also known as model predictive control, rolling horizon procedure
 - Stochastic lookahead:
 - Two-stage (widely used in stochastic linear programming)
 - Multistage
 - » Monte carlo tree search (MCTS) for discrete action spaces
 - » Multistage scenario trees (stochastic linear programming) typically not tractable.

Four (meta)classes of policies

- 1) Policy function approximations (PFAs)
 - Lookup tables, rules, parametric/nonparametric functions
- 2) Cost function approximation (CFAs)
 - » $X^{CFA}(S_t \mid \theta) = \arg \max_{x_t \in \overline{X}_t^{\pi}(\theta)} \overline{C}^{\pi}(S_t, x_t \mid \theta)$
- 3) Policies based on value function approximations (VFAs)
- $X_t^{VFA}(S_t) = \arg \max_{x_t} \left(C(S_t, x_t) + \overline{V}_t^x \left(S_t^x(S_t, x_t) \right) \right)$ 4) Direct lookahead policies (DLAs)
 - » Deterministic lookahead/rolling horizon proc./model predictive control $X_{t}^{LA-D}(S_{t}) = \arg \max_{\tilde{x}_{tt},...,\tilde{x}_{t,t+H}} C(\tilde{S}_{tt},\tilde{x}_{tt}) + \sum_{t'=t+1} C(\tilde{S}_{tt'},\tilde{x}_{tt'})$
 - » Chance constrained programming

 $P[A_t x_t \le f(W)] \le 1 - \delta$

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

$$X_{t}^{LA-S}(S_{t}) = \underset{\tilde{x}_{tt}, \tilde{x}_{t,t+1}, \dots, \tilde{x}_{t,t+T}}{\arg \max C(\tilde{S}_{tt}, \tilde{x}_{tt})} + \sum_{\tilde{\omega} \in \tilde{\Omega}_{t}} p(\tilde{\omega}) \sum_{t'=t+1}^{t} C(\tilde{S}_{tt'}(\tilde{\omega}), \tilde{x}_{tt'}(\tilde{\omega}))$$

$$X_{t}^{LA-RO}(S_{t}) = \arg\max_{\tilde{x}_{tt},\dots,\tilde{x}_{t,t+H}} \min_{w \in W_{t}(\theta)} C(\tilde{S}_{tt},\tilde{x}_{tt}) + \sum_{t'=t+1}^{T} C(\tilde{S}_{tt'}(w),\tilde{x}_{tt'}(w))$$

 $\rangle\rangle$

Four (meta)classes of policies

- 1) Policy function approximations (PFAs)
 - » Lookup tables, rules, parametric/nonparametric functions
- 2) Cost function approximation (CFAs)

» $X^{CFA}(S_t \mid \theta) = \arg \max_{x_t \in \overline{X}_t^{\pi}(\theta)} \overline{C}^{\pi}(S_t, x_t \mid \theta)$

- 3) Policies based on value function approximations (VFAs)
 - $X_t^{VFA}(S_t) = \arg\max_{x_t} \left(C(S_t, x_t) + \overline{V}_t^x \left(S_t^x(S_t, x_t) \right) \right)$
- 4) Direct lookahead policies (DLAs)
 - » Deterministic lookahead/rolling horizon proc./model predictive control $X_{t}^{LA-D}(S_{t}) = \arg \max_{\tilde{x}_{tt},...,\tilde{x}_{t,t+H}} C(\tilde{S}_{tt}, \tilde{x}_{tt}) + \sum_{t'=t+1}^{T} C(\tilde{S}_{tt'}, \tilde{x}_{tt'})$
 - » Chance constrained programming $P[A, x_t \le f(W)] \le 1 - \delta$
 - » Stochastic lookahead /stochastic prog/Monte Carlo tree search

$$X_{t}^{LA-S}(S_{t}) = \underset{\tilde{x}_{tt}, \tilde{x}_{t,t+1}, \dots, \tilde{x}_{t,t+T}}{\arg \max C(\tilde{S}_{tt}, \tilde{x}_{tt})} + \sum_{\tilde{\omega} \in \tilde{\Omega}_{t}} p(\tilde{\omega}) \sum_{t'=t+1}^{I} C(\tilde{S}_{tt'}(\tilde{\omega}), \tilde{x}_{tt'}(\tilde{\omega}))$$

'Robust optimization"

$$X_{t}^{LA-RO}(S_{t}) = \arg\max_{\tilde{x}_{tt},...,\tilde{x}_{t,t+H}} \min_{w \in W_{t}(\theta)} C(\tilde{S}_{tt}, \tilde{x}_{tt}) + \sum_{t'=t+1}^{T} C(\tilde{S}_{tt'}(w), \tilde{x}_{tt'}(w))$$

>>

Four (meta)classes of policies

1) Policy function approximations (PFAs)

- » Lookup tables, rules, parametric/nonparametric functions
- 2) Cost function approximation (CFAs) $V^{CFA}(S \mid \theta) = \arg \max = \overline{C}^{\pi}(S \mid x \mid \theta)$
 - » $X^{CFA}(S_t | \theta) = \arg \max_{x_t \in \overline{X}_t^{\pi}(\theta)} \overline{C}^{\pi}(S_t, x_t | \theta)$
- 3) Policies based on value function approximations (VFAs) $W^{VEA}(G) = \sqrt{G} \left(\frac{G}{G} \left(\frac{G}{G} \right) - \frac{1}{2} \sqrt{G} \left(\frac{G}{G} \left(\frac{G}{G} \right) - \frac{1}{2} \sqrt{G} \right) \right)$
- $X_t^{VFA}(S_t) = \arg \max_{x_t} \left(C(S_t, x_t) + \overline{V}_t^x \left(S_t^x(S_t, x_t) \right) \right)$ 4) Direct lookahead policies (DLAs)
 - » Deterministic lookahead/rolling horizon proc./model predictive control $X_{t}^{LA-D}(S_{t}) = \arg \max_{\tilde{x}_{tt},...,\tilde{x}_{t,t+H}} C(\tilde{S}_{tt}, \tilde{x}_{tt}) + \sum_{t'=t+1} C(\tilde{S}_{tt'}, \tilde{x}_{tt'})$
 - » Chance constrained programming

 $P[A_t x_t \le f(W)] \le 1 - \delta$

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

$$X_{t}^{LA-S}(S_{t}) = \underset{\tilde{x}_{tt}, \tilde{x}_{t,t+1}, \dots, \tilde{x}_{t,t+T}}{\arg \max C(\tilde{S}_{tt}, \tilde{x}_{tt})} + \sum_{\tilde{\omega} \in \tilde{\Omega}_{t}} p(\tilde{\omega}) \sum_{t'=t+1}^{t} C(\tilde{S}_{tt'}(\tilde{\omega}), \tilde{x}_{tt'}(\tilde{\omega}))$$

$$X_{t}^{LA-RO}(S_{t}) = \arg\max_{\tilde{x}_{tt},\dots,\tilde{x}_{t,t+H}} \min_{w \in W_{t}(\theta)} C(\tilde{S}_{tt},\tilde{x}_{tt}) + \sum_{t'=t+1}^{T} C(\tilde{S}_{tt'}(w),\tilde{x}_{tt'}(w))$$

 $\rangle\rangle$

1) Policy function approximation (PFA)

- » Revenue maximization problem
 - Demand function

$$D(p \,|\, \overline{\theta}^{\,n}) = \overline{\theta}_1^{\,n} - \overline{\theta}_2^{\,n} p$$

• Revenue

$$R(p \mid \overline{\theta}^{n}) = pD(p) = \overline{\theta}_{1}^{n} p - \overline{\theta}_{2}^{n} p^{2}$$

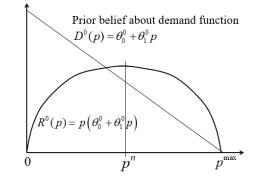
• PFA policy – pure exploitation

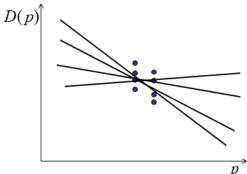
$$p^n = \frac{\overline{\theta_1}^n}{2\overline{\theta_2}^n}$$

• PFA policy with active exploration ("excitation policy")

$$p^{n} = \frac{\overline{\theta_{1}}^{n}}{2\overline{\theta_{2}}^{n}} + \varepsilon^{n} \qquad \varepsilon^{n} \sim N(0, \sigma^{\varepsilon})$$

• Need to tune σ^{ϵ}

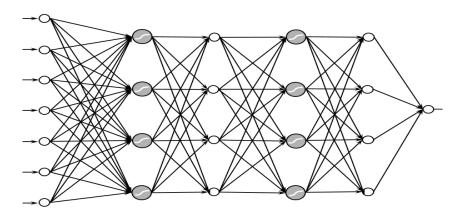




- 1) Policy function approximation (PFA)
 - » Linear decision rules ("affine policies")

$$X^{PFA}(S^n \mid \theta) = \theta_0 + \theta_1 \phi_1(S^n) + \theta_2 \phi_2(S^n) + \dots + \theta_F \phi_F(S^n)$$

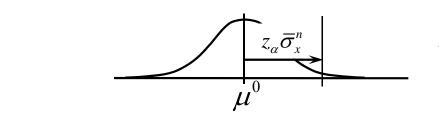
» Neural networks



- 2) Cost function approximations (CFA)
 - » Upper confidence bounding

$$X^{UCB}(S^n \mid \theta^{UCB}) = \arg\max_x \left(\overline{\mu}_x^n + \theta^{UCB} \sqrt{\frac{\log n}{N_x^n}} \right)$$

» Interval estimation

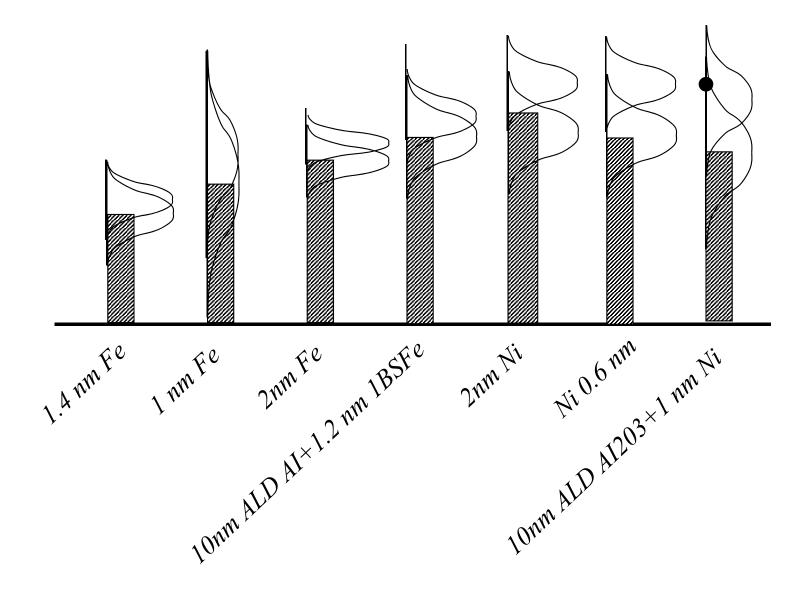


$$X^{IE}(S^n \mid \theta^{IE}) = \arg\max_x \left(\overline{\mu}_x^n + \theta^{IE}\overline{\sigma}_x^n\right)$$

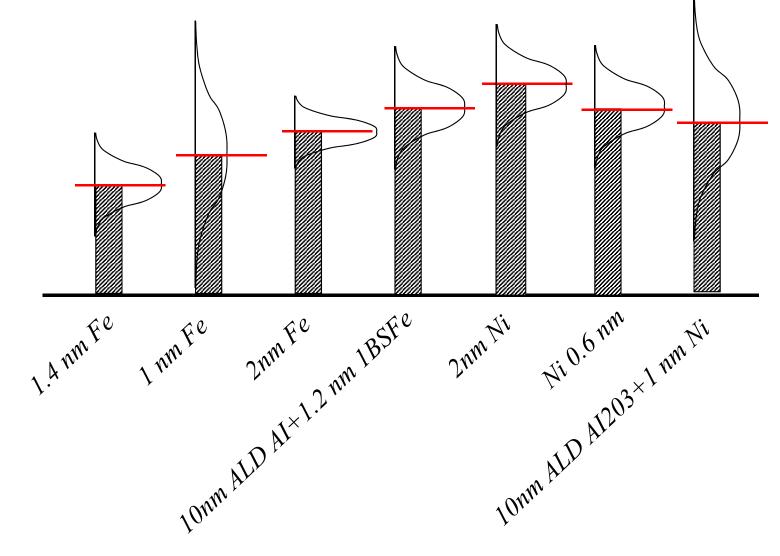
- » Boltzmann exploration ("soft max") $e^{\theta \overline{\mu}_{x}^{n}}$ Choose *x* with probability: $P_{x}^{n}(\theta) = \frac{e^{\theta \overline{\mu}_{x}^{n}}}{\sum e^{\theta \overline{\mu}_{x'}^{n}}}$

$$X^{Boltz}(S^n|\theta) = \arg\max_{x} \{x|P_x^n(\theta) \le U\}.$$

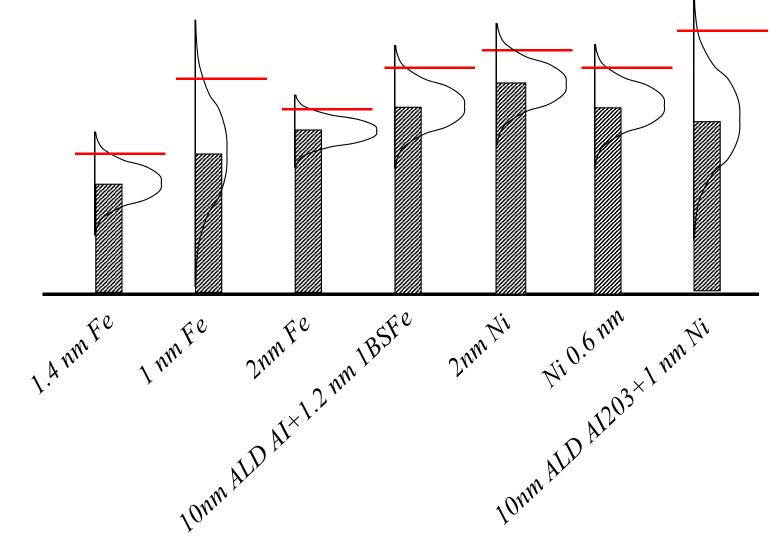
A learning problem with correlated beliefs



• Picking $\theta^{IE} = 0$ means we are evaluating each choice at the mean.



• Picking $\theta^{IE} = 2$ means we are evaluating each choice at the 95th percentile.



- PFAs and CFAs have to be tuned
 - » Final reward ("offline learning")

$$\max_{\theta^{IE}} \mathbb{E}F(x^{\pi,N}, \hat{W}) = \mathbb{E}_{\mu} \mathbb{E}_{W^{1},...,W^{N}|\mu} \mathbb{E}_{\hat{W}}(x^{\pi,N}(\theta^{IE}), \hat{W})$$

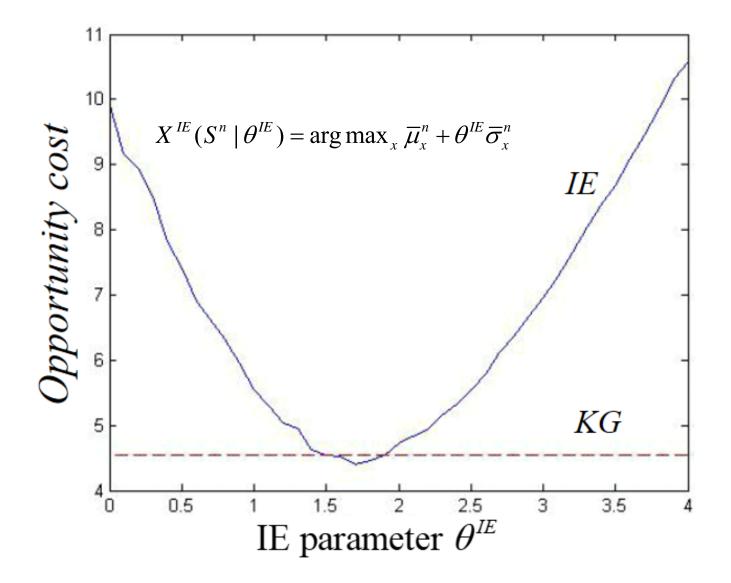
» Cumulative reward ("online learning")

$$\max_{\theta^{IE}} E^{\pi} \left\{ \sum_{t=0}^{T} C_t \left(S_t, X_t^{\pi} (S_t \mid \theta^{IE}), W_{t+1} \right) \mid S_0 \right\}$$

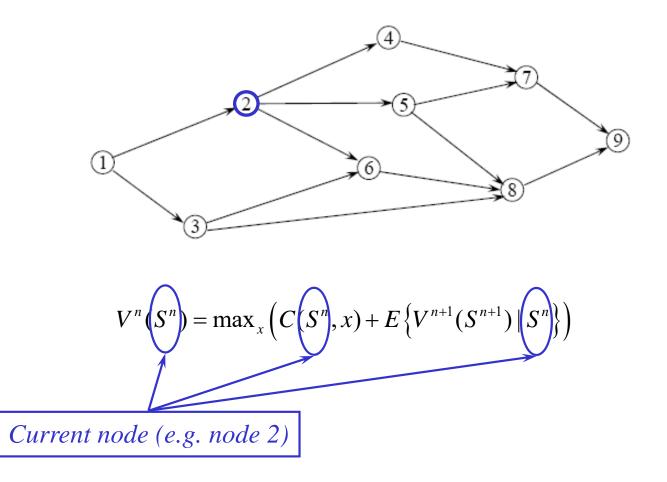
- » Both require searching over tunable parameters.
 - Offline tuning is classical stochastic search
 - Online tuning is a relatively open research area

Cost function approximations

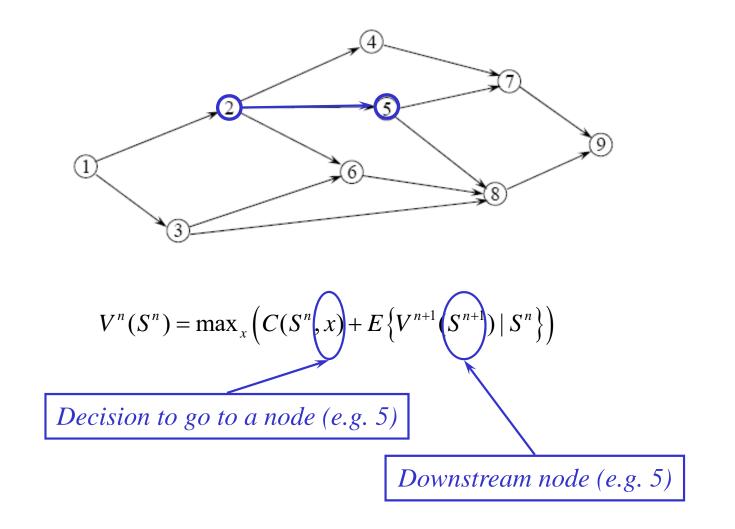
Tuning the interval estimation policy



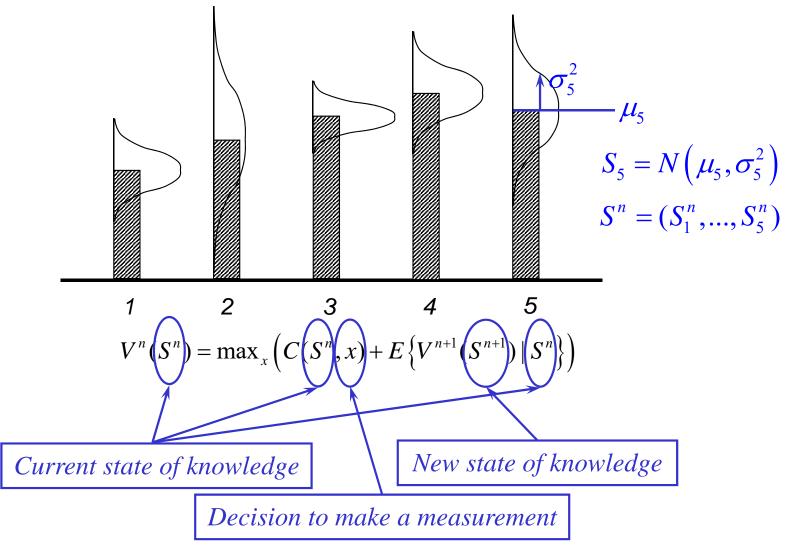
3) Policies based on value function approximations
 » VFAs using a physical state problem



3) Policies based on value function approximations
 » VFAs using a physical state problem



- 3) Policies based on value function approximations
 - » VFAs using a learning problem



- 3) Policies based on value function approximations
 - » Illustration: finding the best drug in the set $X ∈ {x_1, x_2, ..., x_M}$.
 - » After a test we observe success or failure:

$$W_x^{n+1} = \begin{cases} 1 & \text{Success} \\ 0 & \text{Failure} \end{cases} \quad \text{If } x^n = x$$

» Let ρ_x =Probability that drug x is successful. We assume that

$$\rho_x \mid S^n \sim Beta(\alpha_x^n, \beta_x^n)$$

where $S^n = (\alpha^n, \beta^n)$ is our belief state, with updating equations:

$$\alpha_x^{n+1} = \alpha_x^n + W_x^{n+1}, \quad \beta_x^{n+1} = \beta_x^n + (1 - W_x^{n+1})$$

3) Policies based on value function approximations
 » Bellman's equation:

 $V^{n}(\alpha^{n},\beta^{n}) = \max_{x} \mathbb{E}\left[W_{x}^{n+1} + \gamma V^{n+1}(\alpha^{n} + W^{n+1},\beta^{n} + 1 - W^{n+1}) | S^{n}\right]$

- » This can be solved for a stopping problem to determine when to stop testing a single drug.
- » Problematic if α^n and β^n are vectors. Gittins developed a novel decomposition that allows us to solve this problem for one drug ("arm") at a time.

- 3) Policies based on value function approximations
 - » For normally distributed rewards, Gittins (1974) showed that we can solve dynamic programs for each alternative.
 - » Produces a policy that looks like

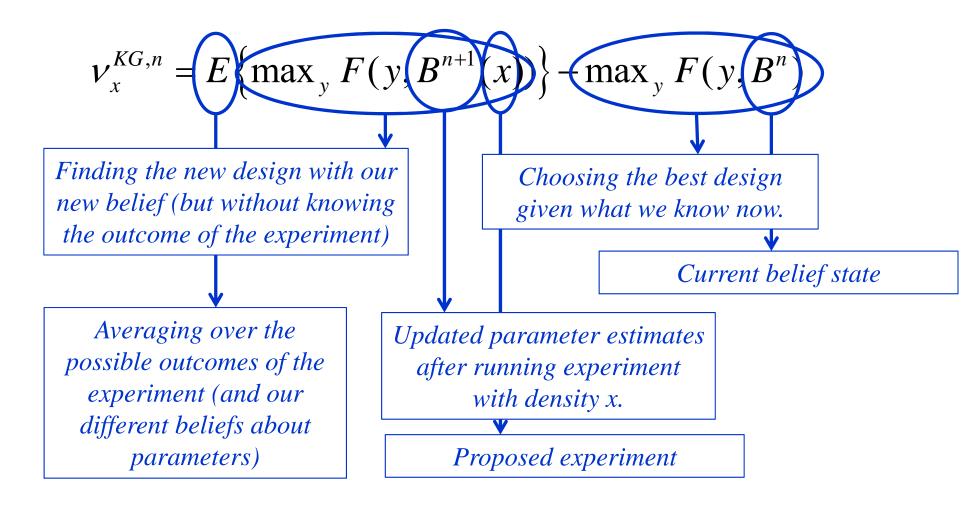
$$X^{Gitt}(S^{n}) = \arg \max_{x} \left(\overline{\mu}_{x}^{n} + \sigma^{W} \Gamma\left(\frac{\sigma_{x}^{n}}{\sigma^{W}}, \gamma\right) \right)$$

where $\Gamma\left(\frac{\sigma_{x}^{n}}{\sigma^{W}}, \gamma\right)$ is the "Gittins index" obtained by

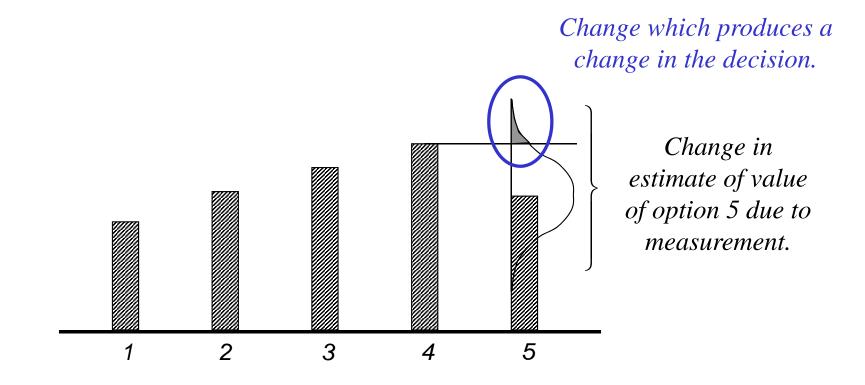
solving a dynamic program for whether to continue or stop testing a single drug.

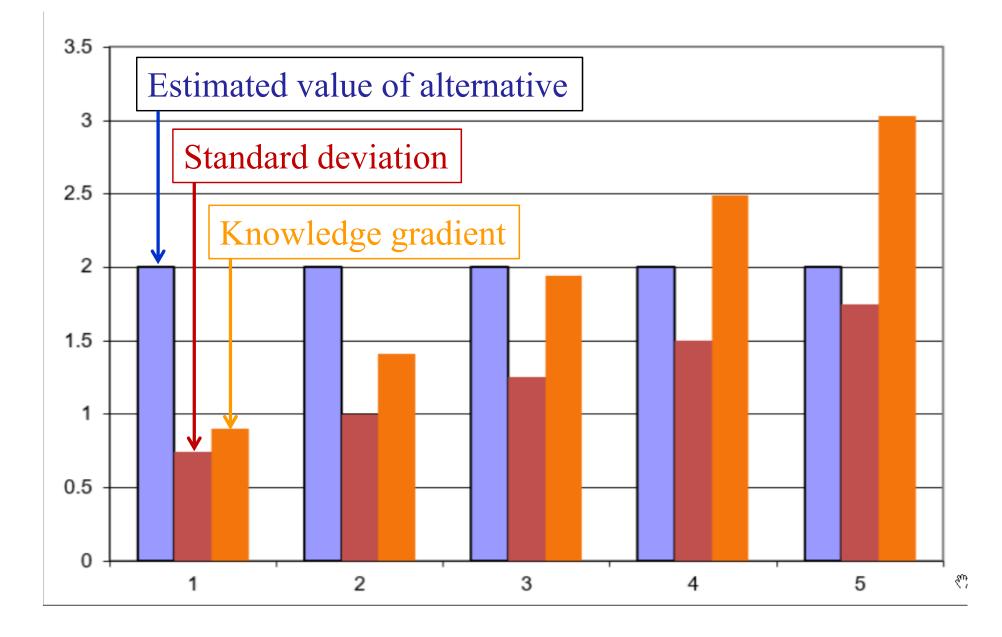
» Considered a computational breakthrough, but computing Gittins indices is still a challenge, and only applies to special cases.

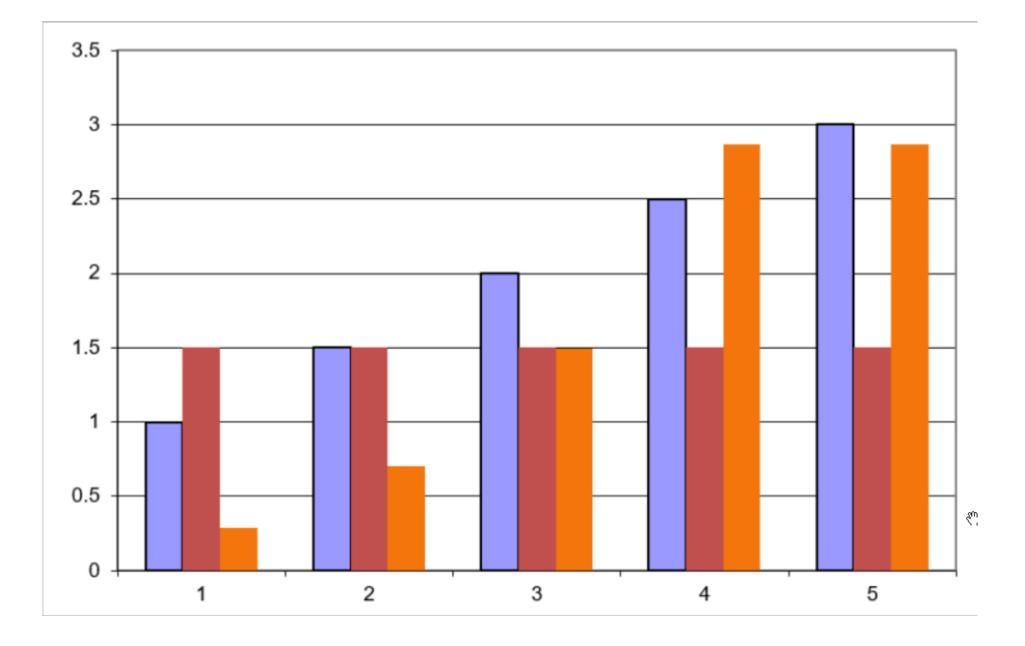
4) Policies based on direct lookaheads (DLA)
» The knowledge gradient for offline (final reward):

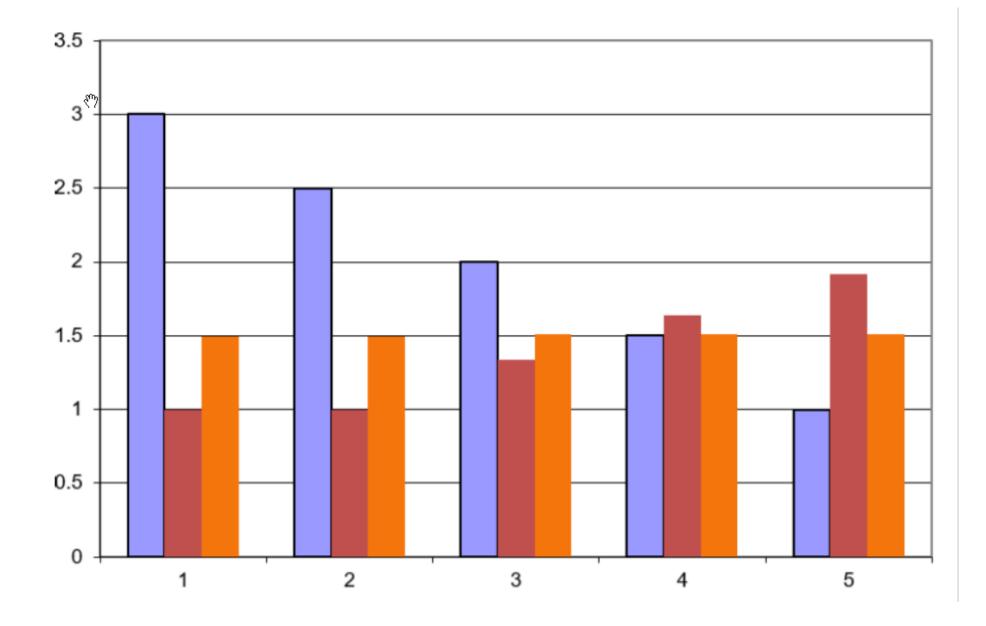


- 4) Policies based on direct lookaheads (DLA)
 - » The knowledge gradient computes the expected improvement from a single experiment









- Some properties of the knowledge gradient for offline (final reward) problems.
 - » $v_x^{KG,n} \ge 0$
 - » Asymptotically optimal (finds best *x* in the limit)
 - » Optimal (by construction) if budget =1.
 - » Optimal for all *n* if number of alternatives = 2 (e.g. A/B testing).
 - » Only stationary policy that is both myopically and asymptotically optimal.
- For online problems
 - » Asymptotically optimal (finds best *x* in the limit) as $\gamma \rightarrow 1$

SIAM J. CONTROL OPTIM. Vol. 56, No. 2, pp. 1105–1129 © 2018 Society for Industrial and Applied Mathematics

FINITE-TIME ANALYSIS FOR THE KNOWLEDGE-GRADIENT POLICY*

YINGFEI WANG[†] AND WARREN B. POWELL[‡]

Abstract. We consider sequential decision problems in which we adaptively choose one of finitely many alternatives and observe a stochastic reward. We offer a new perspective on interpreting Bayesian ranking and selection problems as adaptive stochastic multiset maximization problems and derive the first finite-time bound of the knowledge-gradient policy for adaptive submodular objective functions. In addition, we introduce the concept of prior-optimality and provide another insight into the performance of the knowledge-gradient policy based on the submodular assumption on the value of information. We demonstrate submodularity for the two-alternative case and provide other conditions for more general problems, bringing out the issue and importance of submodularity in learning problems. Empirical experiments are conducted to further illustrate the finite-time behavior of the knowledge-gradient policy.

Key words. ranking and selection, sequential decision analysis, stochastic control

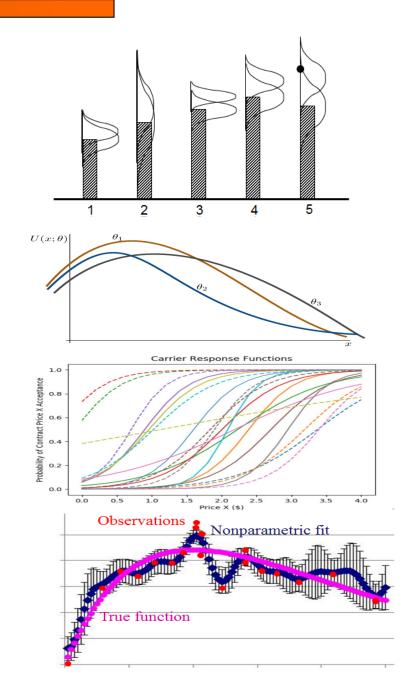
AMS subject classifications. 62F07, 62F15, 62L05, 93E35, 68W40, 68T05

DOI. 10.1137/16M1073388

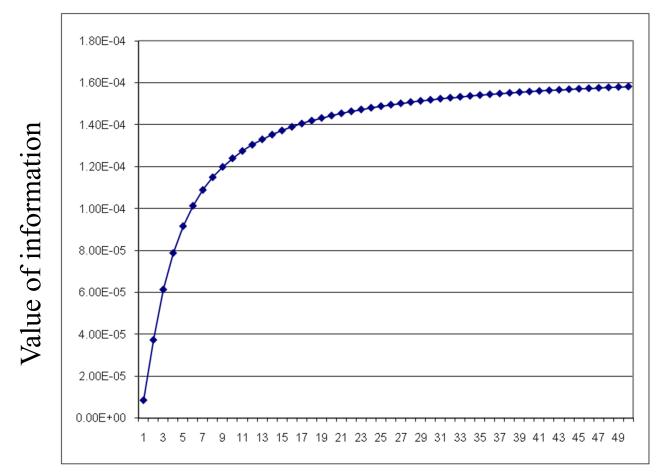
1. Introduction. We consider sequential decision problems in which at each time step, we choose one of finitely many alternatives and observe a random reward. The rewards are independent of each other and follow some unknown probability distribution. One goal can be to identify the alternative with the best expected performance within a limited measurement budget, which is the objective of Bayesian ranking and selection problems. Ranking and selection problems are exam-

Different belief models

- » Lookup tables
 - Independent beliefs
 - Correlated beliefs
- » Linear parametric models
 - Linear models
 - Sparse-linear
 - Tree regression
- » Nonlinear parametric models
 - Logistic regression
 - Neural networks
- » Nonparametric models
 - Gaussian process regression
 - Kernel regression
 - Support vector machines
 - Deep neural networks

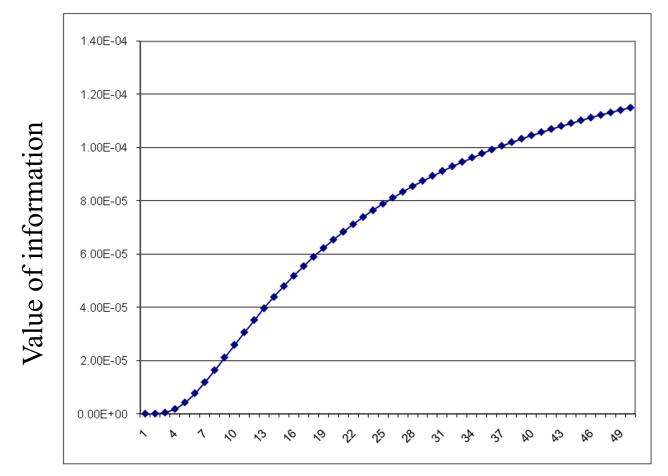


- The marginal value of information
 - » Repeatedly sampling the same alternative



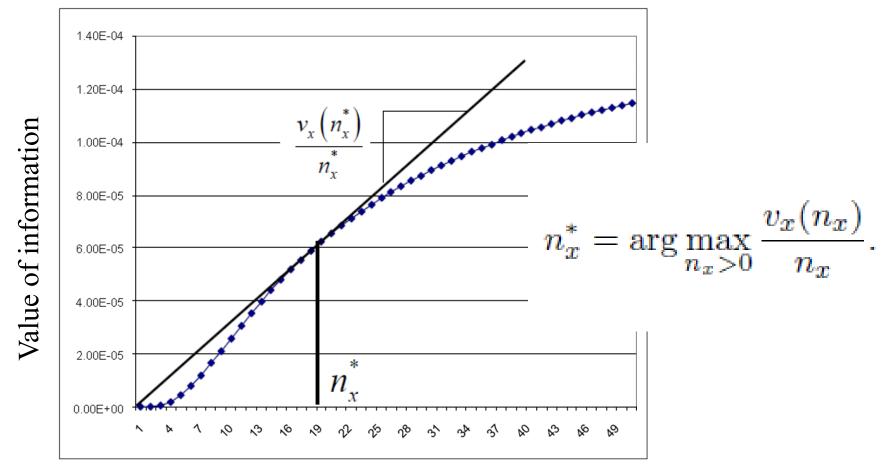
Number of times we sample the same alternative

- The marginal value of information
 - » The value of information may be concave if an experiment is noisy



Number of times we sample the same alternative

- The marginal value of information
 - » The value of information may be concave if an experiment is noisy

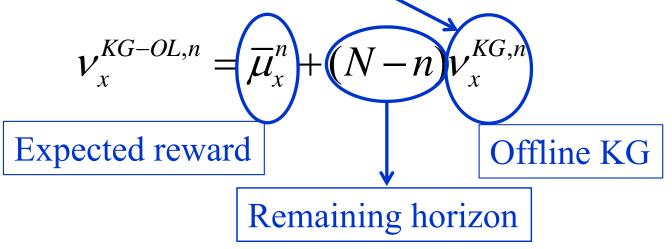


Number of times we sample the same alternative

- From offline to online learning
 - » The knowledge gradient computes the value of information for a terminal reward objective:

$$\left(V_x^{KG,n}\right) = E\left\{\max_y F(y, B^{n+1}(x))\right\} - \max_y F(y, B^n)$$

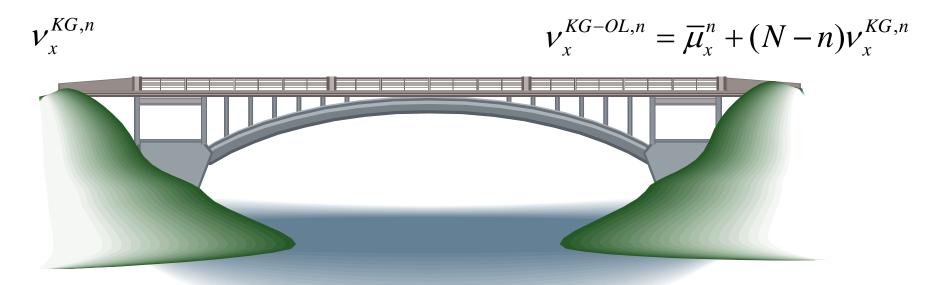
» Imagine that we have a budget of *N* experiments, and that we are summing rewards over this horizon. The value of information from a single experiment is now



Knowledge gradient for offline and online learning

Offline learning

Online learning



» This bridges what have historically been fundamentally different fields.

Outline

- Elements of a sequential decision model
- Mixed state problems
- Designing policies
- Searching for the best policy

Designing policies

Finding the best policy

» We have to first articulate our classes of policies

 $f \in \mathcal{F} = \{PFAs, CFAs, VFAs, DLAs\}$

 $\theta \in \Theta^{f}$ = Parameters that characterize each family.

» So minimizing over $\pi \in \Pi$ means:

$$\Pi = \left\{ f \in \mathcal{F}, \theta \in \Theta^f \right\}$$

» We then have to pick an objective such as

$$\max_{\pi} \mathbb{E}\left\{\sum_{t=0}^{T} C_t\left(S_t, X^{\pi}(S_t \mid \theta)\right) \mid S_0\right\}$$

or

$$\max_{\pi} \mathbb{E}\left\{F(X_T^{\pi}, W) \,|\, S_0\right\}$$

Multiarmed bandit problems

- Policy search class
 - » Policies tend to be relatively simple and easy to compute
 - » Well suited to rapid (e.g. internet speed) learning applications needing fast computation.
 - » Tuning is important, and typically requires a realistic simulator.

- Lookahead class
 - » Policies can be relatively complex to compute.
 - Well suited to
 problems with
 expensive
 experiments.
 - » Typically avoids tuning, but may require a prior.

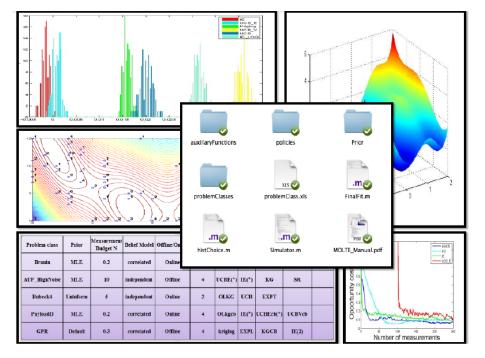
Multiarmed bandit problems

Notes:

- » *Any* of the four classes of policies may be appropriate depending on the characteristics of the problem.
- » Active learning arises in many applications, but is often overlooked.
- » The "bandit" culture of coming up with problem variations should be inherited by other communities.
- » Bandit researchers often focus on good but not optimal policies (e.g. UCB policies) with good characteristics (e.g. robust across a wide range of distributions).

MOLTE

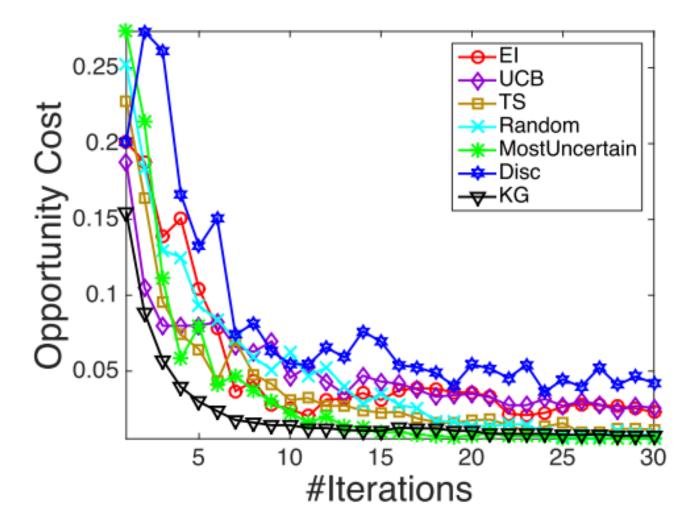
- Modular, optimal learning testing environment
 - » Matlab-based environment with modular library of problems and algorithms, each in its own .m file.
 - » User specifies in a spreadsheet which algorithms are run on which problems



Problem class	Prior	Measur ement Budget	Belief Model	Offline/ Online	N	lumber of Po	licies		
PayloadD	MLE	0.2	independent	Offline	4	kriging	EXPL	IE(1.7)	Thompson Sampling
Branin	MLE	10	correlated	Online	4	OLkgcb	UCBEcb(*)	IE(2)	BayesUCB
Bubeck4	uninformative	5	independent	Online	4	OLKG	UCB	SR	UCBV
GPR	Default	0.3	correlated	Offline	4	kriging	kgcb	IE(*)	EXPT

http://www.castlelab.princeton.edu/software/

Comparison on library problems

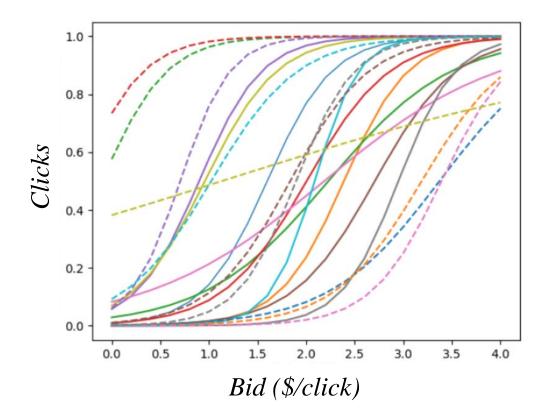


Princeton ad-click game

In collaboration with Roomsage.com

Princeton ad-click game

Learning the bid-response curve



- » Varies by hour of week
- » Response depends on location, age, gender, device

Princeton ad-click game

The ad-click game:

- » Learn the best policy for bidding for ads
- » Bids compete in a simulated auction following the rules used by Google

Policy	profit
PresidentBidness_LA_1	10528
MaxBidder_LAPS_alpha	8439
PresidentBidness PS 1	5553
Weebs_LA_EZPolicy	3458
MaxBidder_PS_alpha	2573
Weebs_LA_MetropolisHastings	1740
AKCB LA 1	1471
pbchen_PS_s4real	790
BaoWang_PS_WeGo2	599
MnM_LAPS_M	219
MmegwaWagnerinterval_estimation	61
AKCB PS 1	0
AKCB PS 1 ohiustina LA 3	0 0
ohiustina LA 3	0
ohiustina LA 3 ohiustina PS 3	0 0
ohiustina LA 3 ohiustina PS 3 TnT_PS_M	0 0 0
ohiustina LA 3 ohiustina PS 3 TnT_PS_M ConnorDozie_PS	0 0 0 -7
ohiustina LA 3 ohiustina PS 3 TnT_PS_M ConnorDozie_PS pbchen_LA_s4real	0 0 0 -7 -42
ohiustina LA 3 ohiustina PS 3 TnT_PS_M ConnorDozie_PS pbchen_LA_s4real BaoWang_PS_WeGo	0 0 -7 -42 -54
ohiustina LA 3 ohiustina PS 3 TnT_PS_M ConnorDozie_PS pbchen_LA_s4real BaoWang_PS_WeGo ConnorDozie_LAPS	0 0 -7 -42 -54 -1007
ohiustina LA 3 ohiustina PS 3 TnT_PS_M ConnorDozie_PS pbchen_LA_s4real BaoWang_PS_WeGo ConnorDozie_LAPS BreyerJohnson_LA_3	0 0 -7 -42 -54 -1007 -1242
ohiustinaLA3ohiustinaPS3TnT_PS_MConnorDozie_PSpbchen_LA_s4realBaoWang_PS_WeGoBaoWang_PS_WeGoConnorDozie_LAPSBreyerJohnson_LA_3BreyerJohnson_PS_3	0 0 -7 -42 -54 -1007 -1242 -7132

Thank you!

For more information, please visit:

http://www.castlelab.Princeton.edu

See "Courses" or the "jungle" webpages.